Probe Into the Influence of Crosslinking on CO2 Permeation of Membranes

نویسندگان

  • Jinghui Li
  • Zhuo Chen
  • Ahmad Umar
  • Yang Liu
  • Ying Shang
  • Xiaokai Zhang
  • Yao Wang
چکیده

Crosslinking is an effective way to fabricate high-selective CO2 separation membranes because of its unique crosslinking framework. Thus, it is essentially significant to study the influence of crosslinking degree on the permeation selectivities of CO2. Herein, we report a successful and facile synthesis of a series of polyethylene oxide (PEO)-based diblock copolymers (BCP) incorporated with an unique UV-crosslinkable chalcone unit using Reversible Addition-Fragmentation Chain Transfer Polymerization (RAFT) process. The membranes of as-prepared BCPs show superior carbon dioxide (CO2) separation properties as compared to nitrogen (N2) after UV-crosslinking. Importantly, the influence of different proportions of crosslinked chalcone on CO2 selectivities was systematically investigated, which revealed that CO2 selectivities increased obviously with the enhancement of chalcone fractions within a certain limit. Further, the CO2 selectivities of block copolymer with the best block proportion was studied by varying the crosslinking time which confirmed that the high crosslinking degree exhibited a better CO2/N2 (αCO2/N2) selectivities. A possible mechanism model revealing that the crosslinking degree played a key role in the gas separation process was also proposed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nano composite PEBAX® membranes: Effect of zeolite X filler on CO2 permeation

A PEBAX-nano zeolite X mixed matrix membrane was fabricated and operationally characterized using single gas (CO2) permeation. X-ray diffraction (XRD) analysis was used to study the arrangement of polymer chains of mixed matrix membrane. The membranes were characterized by scanning electron microscopy (SEM) to study cross-sectional morphology. The single gas permeability were carried...

متن کامل

Nano composite PEBAX® membranes: Effect of zeolite X filler on CO2 permeation

A PEBAX-nano zeolite X mixed matrix membrane was fabricated and operationally characterized using single gas (CO2) permeation. X-ray diffraction (XRD) analysis was used to study the arrangement of polymer chains of mixed matrix membrane. The membranes were characterized by scanning electron microscopy (SEM) to study cross-sectional morphology. The single gas permeability were carried...

متن کامل

A New Resistance Model for Interpretation of Gas Permeation Data of Composite and Asymmetric Membranes

In this work a new resistance model has been presented based on that of Henis-Tripodi which can be used for interpretation of gas permeation data in composite and asymmetric membranes. In contrast to the previous works, in this model the fraction of the support layer surface that includes the pores filled with coating material has been taken into account. The influences of the filled pores on s...

متن کامل

CO2 Selective Carbon Tubular Membrane: The Effect of Stabilization Temperature on BTDA-TDI/MDI P84 co-polyimide

Membranes offer remarkable attributes such as possessing small equipment footprints, having high efficiency and are environmentally friendly, with carbon membranes progressively investigated for gas separation applications. In this study, carbon tubular membranes for CO2 separationare prepared via the dip-coating method with P84 co-polyimide as the carbon precursor. The prepared membranes were ...

متن کامل

Selective Mass Transport of CO2 Containing Mixtures through Zeolite Membranes

In this work, the main aspects regarding the permeation of mixtures containing CO2 and permanent gases such as H2 , N2 and CH4 through zeolite membranes have been investigated, focusing on the description of the mass transport mechanisms taking place inside the pores. First, a brief overview about the performance of the main zeolite membranes used in gas separation (e.g. DDR, CHA, AEI, FAU, etc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017